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ABSTRACT

The relative operating characteristic (ROC) curve is a highly flexible method for representing the quality
of dichotomous, categorical, continuous, and probabilistic forecasts. The method is based on ratios that measure
the proportions of events and nonevents for which warnings were provided. These ratios provide estimates
of the probabilities that an event will be forewarned and that an incorrect warning will be provided for a
nonevent. Some guidelines for interpreting the ROC curve are provided. While the ROC curve is of direct
interest to the user, the warning is provided in advance of the outcome and so there is additional value in
knowing the probability of an event occurring contingent upon a warning being provided or not provided.
An alternative method to the ROC curve is proposed that represents forecast quality when expressed in terms
of probabilities of events occurring contingent upon the warnings provided. The ratios used provide estimates
of the probability of an event occurring given the forecast that is issued. Some problems in constructing the
curve in a manner that is directly analogous to that for the ROC curve are highlighted, and so an alternative
approach is proposed. In the context of probabilistic forecasts, the ROC curve provides a means of identifying
the forecast probability at which forecast value is optimized. In the context of continuous variables, the
proposed relative operating levels curve indicates the exceedence threshold for defining an event at which
forecast skill is optimized, and can enable the forecast user to estimate the probabilities of events other than
that defined by the forecaster.

1. Introduction

Contingency tables are highly flexible methods that
can be used to estimate the quality of deterministic and
probabilistic forecast systems that express output in con-
tinuous, categorical, or binary mode. In their simplest
form, contingency tables indicate the quality of a fore-
cast system by considering its ability to anticipate cor-
rectly the occurrence or nonoccurrence of predefined
events that are expressed in binary terms. For example,
precipitation occurrence can be represented on a binary
scale by defining an event if precipitation occurred, and
a nonevent if there was no precipitation. Data that typ-
ically are measured in continuous format can be reduced
to a binary statement by, for example, defining whether
a season’s rainfall occurred in the bottom tercile of cli-
matological seasonal totals. Similarly, the forecast is
reduced to a binary statement of whether the defined
event is expected to occur. A warning, W, is defined as
a forecast of an event, E, occurring. For probabilistic

Corresponding author address: Dr. Simon Mason, IRI, Scripps
Institution of Oceanography, University of California, San Diego,
Mail Code 0235, La Jolla, CA 92093.
E-mail: simon@lacosta.ucsd.edu

forecasts, warnings are issued when the forecast prob-
ability of an event occurring exceeds a predefined
threshold.

A two-by-two contingency table can be constructed
for a binary system as illustrated in Table 1. From a
total number of n observations, the total number of
events is given by e, and of nonevents by e9 ; the total
number of warnings is given by w, and of no-warnings
by w9. The following outcomes are possible: a hit, if an
event occurred and a warning was provided (h is the
number of hits); a false alarm, if an event did not occur
but a warning was provided ( f is the number of false
alarms); a miss, if an event occurred but a warning was
not provided (m is the number of misses); a correct
rejection, if an event did not occur and a warning was
not provided (c is the number of correct rejections). The
relative (or receiver) operating characteristic (ROC)
curve (Swets 1973; Mason 1982; Harvey et al. 1992)
is a useful method of representing forecast skill that is
based on such a contingency table. In this paper, some
guidelines for interpreting the ROC curve are provided,
and some of the limitations of the curve are outlined.
An alternative way of summarizing the information in
the contingency table is examined and compared with
the ROC curve.
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TABLE 1. Two-by-two contingency table for verification of a binary
forecast system.

Observations

Forecasts

Warning, W No warning, W9 Total

Event, E
Nonevent, E9

h
f

m
c

e
e9

Total w w9 n

2. Data and experimental methods

The ECHAM31-T42 general circulation model was
forced using observed sea surface temperatures for the
45-yr period 1950–94. An ensemble of 10 runs was
produced, and daily rainfall rates over the 3-month pe-
riod September–November were averaged for each of
the 10 ensemble members over an area representing
eastern Africa (108N–108S, 308–508E). The September–
November period constitutes an important rainfall sea-
son over eastern Africa, and potentially useful predict-
ability of the rains during this season has been dem-
onstrated elsewhere (Mutai et al. 1998). Rainfall data
from an updated version of the Hulme (1992) obser-
vational dataset were similarly averaged over the same
area. The correlation between the ensemble-mean rain-
fall and the observations is 0.625, which, over a 45-yr
period, provides a strong indication of skill. The sim-
ulation provides an indication of potential predictability
by estimating the forecast skill that could be achieved
using this atmospheric general circulation model, given
perfect sea surface temperature forecasts. The procedure
of calculating area-averaged rainfall was repeated for
the March–May rainfall season, which is considered less
predictable than the September–November season (Mu-
tai et al. 1998). The correlation between the ensemble-
mean rainfall and the observations is 0.085, over the
45-yr period, effectively indicating no skill.

For each of the two seasons, the 45 yr of observed
and simulated area-averaged rainfall were grouped into
equiprobable terciles. The three categories are referred
to as ‘‘below normal,’’ ‘‘near normal,’’ and ‘‘above nor-
mal.’’ The ensemble-mean rainfall was categorized in
this way, as well as the simulated rainfall from the in-
dividual ensemble members. For each year the per-
centages of the ensemble members with simulated rain-
fall in each of the three rainfall categories were cal-
culated.

3. Relative operating characteristic

a. Deterministic systems

The relative operating characteristic is a representa-
tion of the skill of a forecast system in which the hit

1 ECHAM 3 is version 3.6 of ECHAM, which is from the Max-
Planck-Institut für Meteorologie in Hamburg, Germany.

rate and the false-alarm rate are compared (Swets 1973).
Both ratios can be calculated simply from the contin-
gency table (Mason 1982):

hit rate 5 h /(h 1 m) 5 h /e 5 p(W | E); (1)

false-alarm rate 5 f /( f 1 c) 5 f /e9 5 p(W | E9). (2)

The false-alarm rate differs from the false-alarm ratio
(Doswell et al. 1990; Schaefer 1990; Harvey et al.
1992), which is traditionally calculated as

f /( f 1 h) 5 f/w 5 p(E9 | W). (3)

[There is some inconsistency in the literature, and some-
times no distinction between the false-alarm rate and
false-alarm ratio is made. Consequently, both Eqs. (2)
and (3) have been referred to as the false-alarm rate
(Wilks 1995).] The hit and false-alarm rates, as defined
here, fully represent the information in the contingency
table.

The hit and false-alarm rates, respectively, indicate
the proportion of events for which a warning was pro-
vided correctly, and the proportion of nonevents for
which a warning was provided incorrectly. The hit rate
is sometimes known as the probability of detection, or
prefigurance (Olson 1965; Panofsky and Brier 1965;
Murphy and Winkler 1987; Doswell et al. 1990; Harvey
et al. 1992; Wilks 1995), and provides an estimate of
the probability that an event will be forewarned. The
false-alarm rate estimates the probability that for a non-
event a warning will be provided incorrectly.

For a system that has no skill, the warnings and events
are by definition independent occurrences, and so the
probability that a warning was provided is not contin-
gent upon an event occurring or not occurring. In other
words, the probability that a warning was provided is
unrelated to the outcome and so

p(W | E) 5 p(W | E9) 5 p(W). (4)

From Eqs. (1), (2), and (4), it is true by definition that
when there is no skill the hit and false-alarm rates will
both be equal to the prior probability of a warning being
provided, p(W) (Murphy and Winkler 1987). This equal-
ity occurs when warnings are issued randomly, and
when perpetual warnings or no-warnings are provided.
When the forecast system has some skill, the hit rate
exceeds the false-alarm rate; negative skill is indicated
when the false-alarm rate exceeds the hit rate. Because
of the equality of the hit and false-alarm rates for all
forecast strategies with no skill, the difference between
the two ratios could be considered an equitable skill
score (Gandin and Murphy 1992). Alternatively, the
likelihood ratio, defined as

likelihood ratio 5 p(W | E) 4 p(W | E9), (5)

is close to 1.0 when there is no skill, is larger than 1.0
when there is skill, and approaches 0.0 when there is
negative skill. The likelihood ratio indicates how much
more (or less) likely it is that a warning was issued
before an event than before a nonevent.
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TABLE 2. Area-averaged observations and ensemble-mean simulations of Sep–Nov rainfall over eastern Africa (108N–108S, 308–508E) for
the period 1950–94. The observations and ensemble-mean simulations are expressed in tercile format, with ‘‘B’’ representing below-normal,
‘‘N’’ near-normal, and ‘‘A’’ above-normal rainfall. Also presented are the percentages of the individual ensemble members that simulated
rainfall in each of the three categories.

Year Obs. Sim.

Probs.

B N A Year Obs. Sim.

Probs.

B N A

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972

B
A
N
N
B
B
N
B
B
N
B
A
N
A
B
A
A
A
A
N
B
N
A

B
A
N
B
B
B
B
N
N
B
B
A
A
N
B
N
A
A
N
B
N
N
A

50
10
20
90

100
70

100
20
30
70
80
10
10
20
60
10
10

0
20
40
40
40

0

40
30
60
10

0
20

0
70
50
30
20
20
30
60
40
40
10
50
60
60
20
20
10

10
60
20

0
0

10
0

10
20

0
0

70
60
20

0
50
80
50
20

0
40
40
90

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

N
B
B
B
A
A
B
N
N
A
B
A
N
N
N
A
A
N
B
B
N
A

N
B
B
N
A
A
B
N
A
A
A
N
B
B
N
A
A
N
N
A
B
A

40
40
60
20
10

0
60
30
20

0
10
40
60
50
30
10
20
10
30
10
50

0

30
60
30
60
30
20
40
30
40
20
20
30
30
30
30
30
40
40
60
20
50
10

30
0

10
20
60
80

0
40
40
80
70
30
10
20
40
60
40
50
10
70

0
90

TABLE 3. Contingency tables for the ensemble mean simulation of
Sep–Nov rainfall over eastern Africa (108N–108S, 308–508E) for the
period 1950–94. Tables are provided for the simulation of (a) below-
normal and (b) above-normal rainfall.

Observations

Forecasts

Above
normal

Not
above normal Total

a.
Above normal
Not above normal

11
4

4
26

15
30

Total 15 30 45

b.
Above normal
Not above normal

8
7

7
23

15
30

Total 15 30 45

An example is provided in Table 2, where simulations
of September–November rainfall over eastern Africa
(108N–108S, 308–508E) using the ECHAM3-T42 model
are summarized. The ensemble-mean simulations and
the observations have been grouped into three equi-
probable categories, and the observed and simulated
categories are indicated for each year from 1950 to
1994. A ‘‘B’’ represents rainfall in the driest third of
the years, ‘‘N’’ indicates rainfall in the middle third of
the years, and ‘‘A’’ represents rainfall in the wettest
third. Above-normal rainfall was simulated when above-
normal rainfall conditions occurred for 1951, 1961,
1966, 1967, 1972, 1977, 1978, 1982, 1988, 1989, and

1994. The number of hits is therefore 11 (Table 3a), and
given that there are 15 events in total, the hit rate is
0.733. The hit rate indicates that 73% of the above-
normal rainfall events were simulated correctly over the
45-yr period. In a forecasting environment, a hit rate of
0.733 provides an estimate that a warning could be pro-
vided for 73% of future above-normal rainfall events,
assuming no change in predictability or forecast per-
formance. In 1962 above-normal rainfall was simulated
but did not occur, and so 1962 constitutes a false alarm.
There are a total of four false alarms for above-normal
rainfall conditions, and given that there are 30 years
when rainfall conditions were not above normal, the
false-alarm rate is 0.133 (Table 3a). A contingency table
for the below-normal category is provided in Table 3b,
for which the hit rate is 0.533, and the false-alarm rate
is 0.233. The hit rate for above-normal (below normal)
rainfall of 0.733 (0.533) is greater than the false-alarm
rate of 0.133 (0.233), thus suggesting a high level of
skill that could be expected given the strong positive
correlation between the ensemble-mean and observed
rainfall.

The ECHAM3-T42 simulation of March–May rain-
fall over eastern Africa provides an example of a system
with minimal skill. The simulations are summarized in
Table 4, and the ensemble-mean contingency tables for
above- and below-normal rainfall are presented in Table
5. In the case of above-normal rainfall, the hit rate of
0.267, and false-alarm rate of 0.367 are close to the
prior probability of a warning (0.333). The likelihood
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TABLE 4. Area-averaged observations and ensemble-mean simulations of Mar–May rainfall over eastern Africa (108N–108S, 308–508E)
for the period 1950–94. The observations and ensemble-mean simulations are expressed in tercile format, with ‘‘B’’ representing below-
normal, ‘‘N’’ near-normal, and ‘‘A’’ above-normal rainfall. Also presented are the percentages of the individual ensemble members that
simulated rainfall in each of the three categories.

Year Obs. Sim.

Probs.

B N A Year Obs. Sim.

Probs.

B N A

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972

N
A
A
B
B
B
N
A
N
B
A
B
N
A
A
B
B
A
A
B
N
N
B

B
A
N
N
A
B
B
B
N
B
N
A
A
B
A
B
B
N
B
A
A
N
N

70
10
30

0
10
70
50
40
20
50
30

0
0

70
10
70
60
30
60
20

0
50
30

20
10
50
70
20
20
40
60
50
40
40
10
10
30
40
20
20
60
30
30
10
30
60

10
80
10
30
70
10
10

0
30
10
40
90
90

0
50
10
20
10
10
50
90
20
10

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

B
A
N
A
N
A
A
N
A
N
B
B
N
N
N
B
A
N
N
B
A
B

A
A
N
B
B
N
A
A
N
A
A
B
N
A
N
B
N
A
N
B
N
B

10
0

60
50
30
40
20
40
20
10

0
100

30
10
30
50
20
10
30
70
20
60

10
40
30
50
60
20
20
20
50
50
30

0
20
30
30
50
50
30
40
30
50
20

80
60
10

0
10
40
60
40
30
40
70

0
50
60
40

0
30
60
30

0
30
20

TABLE 6. Contingency table for the simulation of Sep–Nov rainfall
over eastern Africa (108N–108S, 308–508E) for the period 1950–94.
Warnings are issued only when at least 80% of the ensemble members
simulate above-average rainfall.

Observations

Forecasts

Above
normal

Not
above normal Total

Above normal
Not above normal

5
0

10
30

15
30

Total 5 40 45

TABLE 5. Contingency tables for the ensemble mean simulation of
Mar–May rainfall over eastern Africa (108N–108S, 308–508E) for the
period 1950–94. Tables are provided for the simulation of (a) below-
normal and (b) above-normal rainfall.

Observations

Forecasts

Above
normal

Not
above normal Total

a.
Above normal
Not above normal

4
11

11
19

15
30

Total 15 30 45

b.
Above normal
Not above normal

8
7

7
23

15
30

Total 15 30 45

ratio of 0.727 indicates that the probability that a warn-
ing was provided is slightly less for when an event
occurred compared to when an event did not occur. The
likelihood ratio of less than 1.0 is an indication that
there is weak negative skill in simulating above-normal
March–May rainfall. However, the hit and false-alarm
rates for below-normal rainfall are the same as for the
September–November rainfall, giving a likelihood ratio
of 2.286, which is evidence of positive skill. The low
correlation between the ensemble-mean simulated and
observed March–May rainfall of 0.085 therefore con-
ceals a suggestion of skill in simulating below-normal
rainfall conditions for this season.

b. Probabilistic systems and the ROC curve

For probabilistic forecasts, a warning can be issued
when the forecast probability for a predefined event ex-
ceeds some threshold (Mason 1979). If, for example, it
is decided that a warning is to be issued only when there
is at least an 80% confidence that an event will occur,
then above-normal conditions for September–November
rainfall are indicated in 1966, 1972, 1978, 1982, and
1994 (Table 2). A new contingency table could then be
constructed and is indicated in Table 6. Different warn-
ing thresholds can be used for the predefined event, and
a set of hit and false-alarm rates can then be determined.
This set of hit rates is plotted against the corresponding
false-alarm rates to generate the ROC curve (Figure 1a).
While there are a number of indices for summarizing
the performance (Mason 1982), the area under the
curve, A, is the most commonly used (and simplest to
calculate) and has become known as the ROC score.
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For deterministic forecasts, an ROC curve can be gen-
erated by plotting the hit and false-alarm rate for the
forecast system, together with the hit and false-alarm
rates obtained for perpetual warnings (for which the hit
and false-alarm rates equal 1.0) and no-warnings (for
which the hit and false-alarm rates equal 0.0) (Fig. 2).

Because there is skill only when the hit rate exceeds
the false-alarm rate, the ROC curve will lie above the
458 line from the origin if the forecast system is skillful
and the total area under the curve will be greater than
0.5. A simple transformation of the ROC score can be
suggested so its range is from 1.0 (for a perfect forecast
system) to 21.0 (for a perfectly bad forecast system),
with 0.0 indicating no skill:

S 5 2 3 (A 2 0.5). (6)

Alternatively, S can be multiplied by 100 to express the
score as a percentage.

c. Interpretation of the ROC curve

In general, for skillful forecast systems, the ROC
curve bends toward the top left, where hit rates are larger
than false-alarm rates. Where the curve lies close to the
diagonal the likelihood ratio is close to 1.0, and the
forecast system does not provide any useful information.
If the curve lies below the line, negative skill is indi-
cated. To illustrate, the curves for above-normal Sep-
tember–November rainfall are bowed well toward the
top left, indicating a high likelihood ratio (Fig. 1a). The
relatively poor predictability of above-normal rainfall
conditions during March–May is evident from the fact
that the curve lies much closer to the diagonal (Fig. 1b)
than for September–November rainfall (Fig. 1a). There
is, however, some indication of skill in simulating be-
low-normal rainfall during the March–May season.

Near the bottom left of the ROC graphs constructed
from the probabilistic information rather than the en-
semble mean (Fig. 1), warnings are issued only when
a high percentage of the ensemble members simulated
above-/below-normal rainfall, and so the number of
warnings is small. Toward the top right, the criterion
for issuing a warning is relaxed, and so warnings are
issued more frequently; the hit rate increases accord-
ingly, but the number of false alarms increases as well.
When the individual ensemble members were consistent
in simulating above-normal September–November rain-
fall conditions (with at least 80% of the ensemble mem-
bers in the upper tercile), then rainfall was below normal
on each occasion (no false alarms were issued), and
warnings are provided for a third of the events (Fig.
1a). However, if a warning of below-normal rainfall
conditions is provided when at least 80% of the ensem-
ble members simulated rainfall amounts in the lower
tercile, a few false alarms are issued, and less than 15%
of the below-normal rainfall events are successfully in-
dicated. For both above- and below-normal rainfall, too
few warnings are issued when the criterion is for at least

80% of the ensemble members to simulate rainfall
amounts in the respective tercile. However, a high hit
rate is achieved relative to the number of false alarms.

In an application where the cost of a false alarm is
prohibitively high, warnings of an event should be is-
sued only when there is high confidence in the event
occurring. The ROC curve for the above-normal rainfall
indicates that a useful number of wet events potentially
could be forewarned successfully, with a minimal threat
of a false alarm, if warnings are issued only when there
is high confidence. If the cost of a miss, rather than of
a false alarm, is prohibitively high, then it would be
desirable to increase the number of warnings by relaxing
the warning criterion. Issuing more warnings should
hopefully ensure that the number of hits is increased at
the expense of the number of misses, but with the pen-
alty of issuing more false alarms. The ROC curve is
useful in helping to identify an optimum warning cri-
terion, by indicating the trade-off between misses and
false alarms. In the example for September–November
rainfall (Fig. 1a), all above-normal rainfall events can
be forewarned if warnings are issued when at least 20%
of the ensemble members simulate rainfall amounts in
the upper tercile. However, using such a low level of
confidence as a threshold is at the cost of issuing warn-
ings almost half the time when rainfall was not above
normal. To ensure that warnings are provided for all
below-normal rainfall events, it is necessary to issue a
warning when 1 or more of the 10 ensemble members
(10%) are in the lower tercile. The consequent high
frequency of warnings that would be issued means that
over 80% of the time that conditions were normal or
above normal, a warning of below-normal rainfall
would be issued. Evidently, then, although there is
strong evidence of skill at simulating September–No-
vember rainfall over eastern Africa, the model is con-
sistently better at simulating wet conditions than dry
conditions for the region.

For a probabilistic system, the ROC curve illustrates
the varying quality of the forecast system at different
levels of confidence in the warning (the forecast prob-
ability). It is not necessarily the case that a forecast
system demonstrates greatest value at the point at which
the likelihood ratio is maximized: instead, each user has
a specific cost–loss operating structure, and hence the
relative frequencies of hits, false alarms, and misses
have to be optimized. The ROC curve can be used in
helping to identify this optimum strategy in any specific
application (Harvey et al. 1992).

4. Relative operating levels

One limitation with the hit and false-alarm rates is
that it is not known in advance whether an event is
going to occur, only whether a warning has been given.
It is considered of additional value to the user to know
what is the probability of an event occurring given that
a warning has been provided, p(E | W) (Murphy and
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FIG. 1. Hit rates vs false-alarm rates for (a) Sep–Nov and (b) Mar–May area-averaged rainfall
for eastern Africa (108N–108S, 308–508E) from 1950 to 1994. The hit and false-alarm rates were
calculated using rainfall simulated by the ECHAM3-T42 general circulation model forced with
observed sea surface temperatures and using 10 ensemble members. Results are shown for the
simulation of rainfall in the upper (solid line) and lower (dotted line) terciles. Rates are indicated



OCTOBER 1999 719M A S O N A N D G R A H A M

FIG. 2. As for Fig. 1 but for the ensemble-mean simulated rainfall.

←

using different minimum percentages of ensemble members simulating rainfall in the respective tercile to issue a warning, as indicated by
the values along the curves. The areas beneath the curves, A, are indicated also.

Winkler 1987), rather than the probability that a warning
was given if an event did occur, p(W | E). Similarly, it
is useful to know what the probability is that an event
will occur when a warning has not been provided,
p(E | W9), rather than the probability that a warning was
not given if an event did occur, p(W9 | E). [In fact, the
false-alarm rate indicates the probability that a warning
was given if an event did not occur p(W | E9), rather
than p(W9 | E).] The relationship between p(W | E) and
p(E | W) is given by Bayes theorem (e.g., Olson 1965):

p(E | W) 5 p(W | E) 3 p(E) 4 p(W). (7)

When training an objective forecast system, the num-
ber of warnings frequently is constrained to be equal to
the number of events, that is, p(W) 5 p(E), in which
case it can be shown from Eq. (7) that p(W | E) 5
p(E | W). In some operational environments, however,
the cost of a false alarm relative to that of a miss may
be so high that it is preferable to use a strict threshold
to define a warning (Harvey et al. 1992), thus con-
straining warnings to occur infrequently, in which case
p(W) , p(E) and so p(W | E) , p(E | W). Similarly, the
cost of a miss may be prohibitive, in which case a low
threshold will be used, and p(W | E) . p(E | W). Since

p(E | W) ± p(W | E) in most practical cases, there is
some value in a complementary scoring system that is
based upon the conditional probability of the outcome
given the forecast information (Murphy and Winkler
1987).

a. Correct-alarm and miss ratios

The relative operating levels (ROL) curve is designed
to represent the skill of a forecast system from the per-
spective of the forecasts. It is based upon a calibration-
refinement factorization of the contingency table rather
than the likelihood-base rate factorization of the ROC
(Murphy and Winkler 1987). Whereas the hit rate in-
dicates the proportion of events that were forewarned,
the ROL curve makes use of the correct-alarm ratio
(Schaefer 1990; Harvey et al. 1992), or postagreement
(Olson 1965), which indicates the proportion of times
that an event occurred given that a warning had been
provided:

correct-alarm ratio 5 h/(h 1 f ) 5 h/w 5 p(E | W).
(8)

The correct-alarm ratio estimates the probability that an
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event will occur given that a warning has been provided.
The relationship between the correct-alarm ratio and the
hit rate is given by Eq. (7). The ROL curve also makes
use of the miss ratio, or detection failure ratio (Doswell
et al. 1990). Whereas the false-alarm rate of the ROC
score indicates the proportion of nonevents that were
forecast as events, the miss ratio indicates the proportion
of times an event occurred when no warning had been
provided:

miss ratio 5 m/(m 1 c) 5 m/w9 5 p(E | W9). (9)

The miss ratio estimates the probability of an event
occurring when no warning has been provided. The re-
lationship between the miss ratio [p(E | W9)] and the
false-alarm rate [p(W | E9)] is not defined directly by
Bayes theorem, but is given by

[1 2 p(W | E9)]p(E9)
p(E | W9) 5 1 2 . (10)

p(W9)

For a forecast system that has no skill, the probability
of an event is independent of the forecasts (Murphy and
Winkler 1987), and so the expected values of the cor-
rect-alarm and miss ratios are both equal to the a priori
probability of an event occurring:

p(E | W) 5 p(E | W9) 5 p(E). (11)

This equality occurs when warnings are issued random-
ly, but not when perpetual warnings or no-warnings are
issued. If the probability of a warning approaches 1.0
(0.0) the correct-alarm (miss) ratio tends toward the
probability of an event occurring, regardless of the skill
of the forecast system. As the probability of a warning
tends toward 0.0 (1.0), the correct-alarm (miss) ratio
remains determined by the skill of the system, but if
perpetual no-warnings (warnings) are provided the cor-
rect-alarm (miss) ratio is indeterminable. An important
consequence is that, unlike the hit and false-alarm rates,
the correct-alarm and miss ratios do not necessarily con-
verge as the probability of a warning tends toward 0.0
or 1.0. Assuming that the probability of a warning is
greater than 0.0 and less than 1.0, for a forecast system
that has some skill the correct-alarm ratio exceeds the
miss ratio (an event is more probable following a warn-
ing than a nonwarning); negative skill is indicated when
the miss ratio exceeds the correct-alarm ratio.

The maximum possible difference between the cor-
rect-alarm and miss ratios (and between the hit and
false-alarm rates) occurs when the number of warnings
is equal to the number of events (although in practice
the maximum observed difference does not necessarily
occur at this point). At this point the number of warnings
is in a sense ‘‘correct,’’ and so it is possible to maximize
the number of hits without necessarily issuing false
alarms. If the number of warnings is reduced, the miss
ratio increases and tends toward the a priori probability
of an event as the number of warnings approaches 0.0
(when it can be said that there is no real forecast skill).
Similarly, if the number of warnings is increased, the

correct-alarm ratio decreases and tends toward the a
priori probability of an event as the number of warnings
approaches the number of forecasts (when again it can
be said that there is no real forecast skill).

As with the hit and false-alarm rates, the correct-
alarm and miss ratios can be obtained from forecast
summaries, such as Tables 2 and 3. It was shown above
that there were 11 hits, when simulating above-normal
September–November rainfall, if the ensemble mean is
considered (Table 3). Given that above-normal rainfall
was simulated for 15 years in total, the correct-alarm
ratio is 0.733. (In this case the correct-alarm ratio is the
same as the hit rate because the number of warnings
and events are identical.) The correct-alarm ratio indi-
cates that 73% of the time above-normal rainfall was
simulated, above-normal rainfall occurred. In a fore-
casting environment, a correct-alarm ratio of 0.733 pro-
vides an estimate that there is a probability of 73% that
rainfall will be above normal, if a warning of above-
normal rainfall is issued. In 1963 above-normal rainfall
occurred but was not simulated (Table 2), and so 1963
constitutes a miss. There are a total of four misses for
above-normal rainfall conditions, and given that there
are 15 years when rainfall conditions were above nor-
mal, the miss ratio is 0.267. The miss ratio indicates
that 27% of the time above-normal rainfall was not sim-
ulated, above-normal rainfall occurred. In a forecasting
environment, a miss ratio of 0.267 provides an estimate
that there is a probability of 27% that rainfall will be
above normal, if a warning of above-normal rainfall is
not provided.

Although the correct-alarm ratio provides an estimate
of the probability that an event will occur, it is not the
case that the correct-alarm ratio is equal to the forecast
probability, even in a well-calibrated forecast system.
The forecast probability should ideally be equal to the
observed relative frequency of an event (Murphy and
Winkler 1977), but the correct-alarm ratio provides an
estimate of the probability of an event given a forecast
probability equal to or greater than the current proba-
bility. In a well-calibrated system, therefore, the correct-
alarm ratio will be greater than the forecast probability.
However, before examining the correct-alarm and miss
ratios for probabilistic forecasts in greater detail, it is
worth considering some features of the graphical pre-
sentation of the ratios.

b. The ROL curve

The ROC score is usually calculated by plotting the
hit rates against the false-alarm rates for different warn-
ing criteria, and then calculating the area under the
curve, as discussed above. If the correct-alarm ratio is
plotted against the miss ratio in the same way as for the
ROC curves, the points of zero skill at different forecast
probabilities would be represented on the graph by a
single point, since the ratios become a function of the
prior probability of the event [Eq. (11)] rather than of
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the forecast probability [Eq. (4)]. Other peculiarities in
plotting the correct-alarm ratio against the miss ratio for
different forecast probabilities arise. First, because there
is a direct inverse relationship between the two ratios,
it is not possible for both the correct-alarm and the miss
ratios to be greater or less than the a priori probability
of an event, and so not all points on the graph are fea-
sible. A second feature of the plot is that because of the
lack of convergence of the correct-alarm (CAR) and
miss ratios (MR) when perpetual warnings or no-warn-
ings are issued, the end points of the curve would always
lie on MR 5 e/n and CAR 5 e/n, rather than at the
origin and at the top right.

Because of these differences in behavior of the ratios
used in the ROL curve from those used in the ROC
curve, it is inappropriate to calculate the ROL score in
a way that is directly similar to that for the ROC score.
A possible alternative would be to plot the correct-alarm
and miss ratios against the warning probability. Such a
plot would be similar to the attributes and reliability
diagrams (Hsu and Murphy 1986; Wilks 1995), but in-
cludes the miss ratios for additional information. The
ROL score could then be calculated as the area between
the two curves, counting area as negative where the
correct-alarm ratio is less than the miss ratio. An area
of greater than zero would be a necessary condition for
skill. However, there remains the problem that the cor-
rect-alarm and miss ratios do not converge as the fore-
cast probability tends toward 0.0 or 1.0, and so an al-
ternative approach is considered preferable.

A fundamentally different solution would be to fix
the definition of the warnings and to calculate the cor-
rect-alarm and miss ratios for different events. If the
ROL curve is constructed as suggested, it can be dem-
onstrated that the correct-alarm ratio now behaves in a
manner identical to that of the hit rate when the forecast
probability is varied. Similarly, the miss ratio behaves
in a manner identical to that of the false-alarm rate (Fig.
3). Consequently, if the correct-alarm ratios are plotted
against the miss ratios for different prior probabilities,
the curve converges on the origin and the top right; all
points on the graph are valid; the diagonal represents
the line of zero skill; skill is indicated when the curve
is bowed toward the top left, where the correct-alarm
ratio exceeds the miss ratio. Because the correct-alarm
and miss ratios display the required properties when
plotted with fixed forecast probability and varying a
priori probability of an event, the area beneath the curve
could be calculated to give an ROL score. Equation (6)
could be used to transform the area into a skill score in
an identical manner to that for the ROC score.

c. Interpretation of the ROL curve

In constructing the ROC curve the prior probability
of an event is kept fixed and the threshold-forecast prob-
ability is altered. When forecasting continuous data
(such as temperatures or rainfall amounts, as opposed

to rainfall occurrence), in many cases the event is de-
fined arbitrarily. In seasonal climate forecasting, for ex-
ample, rainfall forecasts frequently are presented in the
form of probabilities of seasonal rainfall totals being
within each climatological tercile, as in the examples
shown in this paper, but quintiles or alternative thresh-
olds could be used equally justifiably (Ward and Folland
1991). In an imperfect model or forecast system, in
which forecasts of the values of continuous variables
are being provided, there is no guarantee that the fore-
casts provided do not give more reliable indications of
the probability of an event different from that specified.
For example, the number of ensemble members in the
driest tercile may provide better estimates of the prob-
ability of precipitation being in the driest quintile rather
than the driest tercile. Alternatively, in a forecast system
that consistently underforecasts precipitation occur-
rence, warnings of precipitation occurrence may give
reliable estimates of precipitation occurrence of a few
millimeters. Two questions then arise: given a prede-
fined event in the observations, what is the optimal def-
inition of this event in the model data; and given a
predefined event in the model data, what is the optimal
definition of this event in the observations? The latter
question is addressed in the ROL curve by varying the
definition of an event in the observations so that it is
not kept coincident with the definition of an event in
the model.

When constructing the ROL curve, the definition of
a warning is kept fixed. The minimum forecast proba-
bility and the definition of an event in the model data
therefore are predefined. If events are measured using
continuous data, the definition of an event in the ob-
servations can be varied by adjusting the threshold or,
equivalently, the prior probability. For example, pre-
cipitation occurrence could be defined using different
minimum precipitation amounts, or cold spells could be
defined using different temperature thresholds. In the
example for September–November (Fig. 3a), warnings
have been defined when 70% of the ensemble members
simulate rainfall amounts in the upper/lower tercile.
Near the bottom left of the graph an event is defined
when the observation is above (below) the 90th (10th)
percentile, implying that the number of events is small.
Toward the top right, the criterion for defining an event
is relaxed, and so more events are defined.

The ROL curve is able to provide an indication of
the estimated probabilities of different outcomes given
the forecast criteria. For example, given a warning of a
wet event, as defined above, there is an estimated 60%
chance of an event beyond the 80th percentile (in the
wettest 20% of years) occurring, and an estimated 100%
chance of an event beyond the 70th percentile (in the
wettest 30% of years). From a warning of dry condi-
tions, there is an estimated 50% chance of an event drier
than the 30th percentile, and an estimated 100% chance
of an event drier than the 60th percentile. Again there
is shown to be less information in the forecasts of dry
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FIG. 3. Correct-alarm ratios against miss ratios for (a) Sep–Nov and (b) Mar–May area-averaged
rainfall for eastern Africa (108N–108S, 308–508E) from 1950 to 1994. The correct-alarm and miss
ratios were calculated using rainfall simulated by the ECHAM general circulation model forced
with observed sea surface temperatures and using 10 ensemble members. Results are shown for
the simulation of rainfall in the upper (solid line) and lower (dotted line) tails. Warnings were
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issued when at least (a) 70%, (b) 50% of the ensemble members were in the upper (lower) tercile, and events were defined when the
observations were above (below) the percentile indicated by the values along the curves. The areas beneath the curves, A, are indicated
also.

conditions than of wet. Equally it is possible to estimate
from the ROL curves the probability of an event given
no warning. Given a warning of wet conditions, there
was an estimated 60% chance of an event beyond the
80th percentile (in the wettest 20% of years) occurring,
while there is an estimated 15% chance of an event given
no warning (a miss).

Given the information in the ROL curve, the fore-
caster is able to obtain some information about the rel-
ative predictability of events of differing magnitudes.
Similarly, users, for whom access to additional forecast
information frequently is restricted, would be able to
identify the probabilities of events defined using dif-
ferent thresholds that may be of more direct relevance
to their interests than the definition provided by the
forecaster. Figure 3b illustrates ROL curves for March–
May eastern Africa rainfall, when a warning is issued
given that at least 50% of the ensemble members sim-
ulate rainfall totals in the above- and below-normal ter-
ciles. A slightly weaker criterion is used to define a
warning than for the September–November rainfall (Fig.
3a) since the ensemble variance is larger for March–
May than for September–November.

When a warning of below-average rainfall was pro-
vided, 70% of the time observed rainfall was drier than
the 40th percentile, while when no warning was issued,
the observed rainfall was drier than the 40th percentile
only about 30% of the time. The warnings are designed
to indicate a high probability (50%) of rainfall being
within the driest third of years, but apparently give a
good indication of enhanced probabilities of rainfall to-
tals being in the driest 40% of years. It seems probable
that on a number of occasions when warnings of anom-
alously dry conditions were issued, the observed rainfall
was slightly wetter than the climatological third. Per-
haps of greater interest, however, is that the warnings
give good indications of rainfall totals being in the driest
10% of years. About 30% of the time a warning was
issued, a one-in-ten-year drought (defined simply as
anomalously low rainfall) occurred, while when no
warning was issued droughts of such severity occurred
less than 5% of the time. The ROL curve suggests that
there may be a useful degree of predictability of ex-
tremely dry conditions, as well as of the one-in-three-
year droughts of which the warnings were designed to
provide an indication. The forecast user is able to obtain
estimates of the probabilities of droughts of differing
severity, while the forecaster is encouraged to investi-
gate the predictability of extremely dry conditions fur-
ther.

5. Discussion and summary

The relative operating characteristic, ROC (Mason
1982; Stanski et al. 1989; Harvey et al. 1992), is being
considered by the World Meteorological Organization
as a recommended method of indicating the skill of
probabilistic weather and climate forecasts. The ROC
is a highly flexible system that can be used to assess
the skill level of dichotomous, categorical, continuous,
and probabilistic forecasts. It is based on a 2 3 2 con-
tingency table and compares the proportion of events
that were forewarned (the hit rate) with the proportion
of nonevents that occurred after a warning (the false-
alarm rate). Given an ensemble of forecasts, it is useful
to construct an ROC curve showing different combi-
nations of hit and false-alarm rates given different fore-
cast probabilities. The ROC curve is useful for identi-
fying an optimal strategy for issuing warnings, by in-
dicating the trade-off between false alarms and misses.

In an operational environment, the warning is pro-
vided in advance of the outcome, and so there is ad-
ditional value in knowing the probability of an event
occurring, contingent upon the forecast probability. An
alternative summary of the 2 3 2 contingency table is
proposed indicating the probabilities associated with
different events given a warning (correct-alarm ratio),
and the probabilities given no warning (miss ratio). The
correct-alarm and miss ratios are useful in estimating
probabilities of events from an ensemble of forecasts,
which may not provide reliable probabilities because of
model biases and errors.

If the correct-alarm and miss ratios are plotted in the
same manner as for the ROC curve, peculiarities in the
joint behavior of the two ratios impose unwanted con-
straints on the graph. The recommended alternative is
to calculate different values of the two ratios for a fixed
definition of a warning, but for varying event defini-
tions. The forecast probability and definition of an event
in the model data are kept fixed, but the definition of
an event in the observations is varied. The incompati-
bility of the definition of the event between the model
data and the observations can provide valuable infor-
mation to both the forecaster and the forecast user.

Careful interpretation of the ROC and ROL curves
provides a wealth of information about the forecast sys-
tem. The ROC curve illustrates the varying quality of
the forecast system at different levels of confidence in
the warning (the forecast probability) and can be used
to optimize forecast value given the specifics of an in-
dividual user’s cost–loss table. The ROL curve can be
used by the forecaster to help compare levels of pre-
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dictability of events of differing magnitude, and by the
forecast user to estimate probabilities of events other
than that defined by the forecaster. Because of model
biases and systematic errors, forecasts of continuous
variables may provide more reliable indications of the
probability of events different from that specified. For
example, forecasts of precipitation occurrence, in which
the forecast is for at least a trace of precipitation to be
recorded, may provide more useful information about
the probability of at least 5 mm of precipitation, or some
other amount. Similarly, given a history of wind speed
advisories, a forecast user may be able to estimate the
probabilities of different wind speeds given a current
forecast. In the context of seasonal climate forecasting,
the number of ensemble members in the driest tercile
may provide better estimates of the probability of pre-
cipitation being in the driest quintile rather than the
driest tercile.

The area under the ROC and ROL curves is a simple
index for summarizing the skill of a forecast system,
but is sensitive to the number of points that are plotted.
It has been recommended that for the ROC curve normal
probability axes be used instead of linear axes to min-
imize the effects of the number of points (Mason 1982).
This transformation is based on the assumption that the
variable used in the decision criterion has a normal dis-
tribution prior to an event and prior to a nonevent. De-
partures from this assumption are not usually large (Ma-
son 1982) and significantly affect the interpretation of
scores based on the nonlinear axes only when departures
from normality are extreme or sample sizes small (Han-
ley 1988). Nonparametric methods have been developed
for comparing ROC curves, and for testing the signif-
icance of individual curves (Centor 1991), but require
a minimum number of points. Further discussion of the
significance and comparison of ROC or ROL scores is
beyond the scope of this paper. However, the effects of
sample size and the number of points on the graph
should be borne in mind when comparing areas under
ROC or ROL curves on linear axes for different forecast
systems.

Ideally, the ROC curve should be constructed using
probabilistic forecasts so that it is possible to vary the
definition of when a warning is issued, based on varying
levels of forecast confidence. Nevertheless, it is possible
to construct an ROC curve given deterministic forecasts
using perpetual warnings and no-warnings as the end
points (Fig. 2). Unlike the ROC curve, the number of
points on an ROL curve is not constrained when de-
terministic forecasts are issued. Given deterministic
forecasts, there is no freedom to adjust the level of con-
fidence at which a warning is issued, but since the def-
inition of a warning is kept fixed on an ROL curve, the
restriction is irrelevant. In fact, the correct-alarm and
miss rates of the ROL curve are one means of converting
a deterministic forecast into a probabilistic format, and
of estimating the reliability of probabilistic forecasts.
Instead the ROL curve is constrained when forecasts of

dichotomous variables are considered. Ideally an ROL
curve requires forecasts of continuous variables, so that
the definition of an event can be varied, but when fore-
casting dichotomous variables it is possible to define
the end points of an ROL curve as perpetual no-events
(bottom left) and perpetual events (top right).

To illustrate the utility of the ROC and ROL curves,
simulations of rainfall over eastern Africa, using the
ECHAM-T42 general circulation model forced with ob-
served sea surface temperatures, have been examined.
The ROC curves for eastern African rainfall have shown
that the ECHAM-T42 model is able to simulate more
successfully above-normal September–November rain-
fall conditions than below normal. Such information is
valuable in that it enables the forecaster to provide high-
er levels of confidence in forecasts of above-normal
rainfall for this time of year. Similarly, the ROC curve
for the March–May rains, which are generally consid-
ered fairly unpredictable, suggests that the model may
be able to simulate below-normal rainfall conditions
successfully and that there may be predictability when
there is a high level of consistency among the ensemble
members.

The ROL curves for eastern African rainfall have
confirmed that the ECHAM-T42 model is able to sim-
ulate successfully below-average rainfall conditions for
the March–May season, and suggest that there may be
a high level of skill in simulating exceptionally dry
conditions. The possibility that there may be some pre-
dictability of the March–May rainfall was not indicated
by the correlation coefficient, but is suggested by both
the ROC and the ROL curves.
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